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Three approaches to the determination of behavioral stability were examined. In the first,
a learning curve was fit to acquisition data (from Cumming and Schoenfeld, 1960), and
the “experiment” stopped when the data approached sufficiently close to the theoretical
asymptote. In the second, the data were analyzed for variability and linear and quadratic
trend. In the third, the experiment was stopped when the magnitude of the daily changes
in the data fell below a criterion. Accuracy was measured as deviation between the average
value of the dependent variable when the experiment was stopped, and the average value
over the last 100 sessions. The first approach was most accurate, but at the cost of requir-
ing the most sessions and being the most difficult to apply. Both the second and third
approaches provided acceptable criteria with a reasonable cost-accuracy tradeoff. The
second approach permits a continuous adjustment of the criteria to accommodate the
variability intrinsic in the experimental paradigm. The third, nomothetic, approach also
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takes into account the decreasing marginal utility of extended training sessions.
Key words: learning curves, trend analysis, nomothetic criteria, optional stopping

Cumming and Schoenfeld’s words intro-
duce this research as well as they did their
own:

In the literature, the term “stability”
appears to refer to one or both of two
things. In some places, it means that be-
havior is no longer changing significantly
because it is close to its asymptotic value
under the given conditions. In other con-
texts, the term seemingly refers to be-
havior . . . that shows minimal variabil-
ity. . . The concern of the worker is car-
ried by several concrete questions. . . :
When could the experiment have been
stopped with any desired probability that
no further change in the dependent varia-
ble would have been observed? . . .What
is a satisfactory rationale for defining “sta-
bility,” and what is a reasonable criterion
to set for accepting behavior as “stable’?
(1960, p. 71).
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The issue is important, for it is the custom
of behavior analysts to continue an experi-
ment until the data “‘appear stable”, rather
than terminate after a fixed number of ses-
sions. Yet, to this date, there are no widely
accepted criteria for stopping. The criterion
tested by Cumming and Schoenfeld (1960) did
not work:

A 6-day period was considered to have
met the stability criterion if the difference
between the mean rate for the first three
days and the rate for the second three days
was no greater than 59, of the overall
6-day mean. . . Although the criterion
itself tended on repeated application to
select 6-day means at random, the use of
the first occasion on which the criterion
is met proves a bad choice in practice

(pp- 78, 79).

Lacking algorithms for stopping experi-
mental sessions, experimenters have usually
relied on visual inspection to determine sta-
bility. Visual stability tests are presumably one
of the contingency-shaped behaviors that are
acquired during graduate education. Because
such learning is often several stages removed
from the relevant contingencies, we seek here
to replace it with rule-governed behavior.
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In their experiment, Cumming and Schoen-
feld (1960) trained six pigeons on a t-r sched-
ule (analogous to an FI 28.5-sec LH 1.5-sec
schedule) for 200 sessions. These data, similar
in appearance to other learning curves pub-
lished in this journal, provide a good testing
ground for alternate types of stopping criteria.
The present paper evaluates three strategies
for generating such criteria.

EXPERIMENT 1

“Asymptote” is a line that a tangent to a
curve approaches, as the curve is extended to
infinity. To presume that behavior may be at
some point asymptotic is to presume that the
“learning curve” has a single asymptote, and
that it will approach reasonably close to it
within the lifetime of the subjects. Experi-
mental contingencies may, however, establish
an undamped negative feedback loop, so that
the only stability is a stable oscillation be-
tween two asymptotes (‘“‘metastability”). Bar-
ring such a complication—or given indices
such as frequency of oscillation rather than
raw data—we may ask whether any simple
quantitative model of the learning process
provides useful estimates of asymptote and
rate of approach to it.

There are a number of different models of
learning curves to choose from: autocatalytic
(Robertson, 1920), cumulative normal (Culler
and Girden, 1951), power functions (Stevens
and Savin, 1962), and exponential-integral
(Anderson, 1963; Estes, 1950). There should
be few important practical differences among
the models’ estimates of proximity to asmyp-
tote, so we choose one of the simplest, the ex-
ponential learning curve:

R =A(l — /9 ),

where R is the dependent variable, A is the
asymptote, e the base of the natural loga-
rithms, J the number of sessions, and C a rate
constant. The parenthetical expression ranges
between 0 (at Session 0) and 1.0 (as J ap-
proaches infinity). The rate of approach to
asymptote is governed by C, called the time-
constant of the system. When J = C, the system
is 639, of the way to asymptote; at J = 3C,
959%,, and at J = 5C, 999%,. Here is a simple
model that provides direct measure of asymp-
tote and rate of approach. But two parameters
are seldom adequate, since the baseline from

which change is to be measured is often not
zero. This may be easily taken into account
by adding a parameter “B” to the right side
of the equation, which sets the dependent
variable at level B (i.e., baseline level) on the
zeroth session.

METHOD
Subjects

The data were response rates collected by
Cumming and Schoenfeld (1960) and are avail-
able from American Documentation Institute
as Document No. 6244.

Apparatus
" A PDP-11 computer was used.

Procedure

After each session, a simple iterative pro-
gram searched for the best values of A and C.
“Best” was taken as that value which mini-
mized the sum of squared deviations between
the obtained data and the theoretical learning
curve. B (response rate of Session “0”) was
fiixed at a value extrapolated from the first
two sessions. A number of stopping criteria
were evaluated, with their merit decided by
the smallness of the deviation between the
average rate during the six days before stop-
ping and the average rate over Sessions 80
to 180 (the last stable 100 sessions, labelled
“Asymptote” in Table 1).

REsuLTS

The data were considered stable when two
conditions were satisfied: the learning process
had to be 999, of the way to completion (i.e.,
J = 5C) and the average of the last six ses-
sions had to be within 59, of the predicted
asymptote. Table 1 shows the session in which
the criterion was reached by each of the ani-
mals, the average rate for the six days preced-
ing that session, and the per cent by which
this average deviates from that of the last 100
sessions.

DiscussioN

The results hardly justify the effort put into
curve-fitting and updating that fit every ses-
sion. The average error was 149, (the average
error between the theoretical asymptotes and
the last 100 sessions was also 149,). While this
is considerably better than the performance of
Cumming and Schoenfeld’s criterion (average



STABILITY CRITERIA

deviation: 259%,), the average number of ses-
sions required was also considerably greater.
If we had indiscriminately stopped all animals
on the forty-third session, the average individ-
ual deviation would have been 129. System-
atic evaluation of other criteria (J = 2C
through J = 6C, deviation from theoretical
asymptote from 29, through 109, X2, etc.)
yielded none that fared better.

The reason for the failure of this technique
is the failure of the pigeons to approach an
asymptote in a smooth, monotonic fashion. A
fast start, as was the case with the first two
pigeons, would cause an overestimation of
asymptote during the early sessions. This bias
would be eliminated as the data continued to
accumulate, but it was most likely that the
criterion would be satisfied by data that were
anomalously high and met the descending the-
oretical asymptote before it had stabilized at
a more representative level.

Control theory might provide a better model
for the stabilization of data than does learn-
ing theory, for it provides explicit representa-
tion for data that overshoot their asymptotic
level. But that requires three additional pa-
rameters: the damping ratio, and the fre-
quency and phase of oscillation. These make
computer convergence difficult, and complicate
the model to the point of impracticality. Alter-
nately, if data from the earliest part of the
experiment are expendable, we may improve
our estimate of asymptote at the cost of an
inferior account of the first few sessions. But
the issue of how much data to discard itself
stands in need of a criterion. That decision
leads into the issue of exponential weights for
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the data, which, in this context, becomes as
complicated as the control model. Other learn-
ing curves (e.g., logistic) with other criteria for
the elimination of data and the judgement of
stability might yet prove viable, but we now
proceed to other types of criteria.

EXPERIMENT 11

What do people look at when they “eyeball”
data for stability? In the following experi-
ment, we attempted to distill an algorithm
from a number of judgements of ‘“stable by
visual inspection”.

Subjects

Five sophisticated laboratory researchers
served.

Apparatus

Fifty-five graphs of “‘data points” were gen-
erated by computer from random variables
with a mean of 50 and a standard deviation of
five (scale: 25 units to the inch). Each graph
consisted of six unconnected points, with no
numerical ordinates visible.

Procedure

Each graph was displayed through a window
in a file folder. Subjects were told to suppose
that these were the last six sessions from an
experiment that had been in progress for 25
sessions. Only one of the subjects knew the
true nature of the data. They were asked
whether they would stop the experiment at
this point, and asked to rate their confidence
in that decision on a scale of one to three.

Table 1

A comparison of various stability criteria. “Dev” is absolute per cent deviation between
rates and asymptotes. The two values for “Avg Dev” are the average of the column and
the deviation of the average rates from the average asymptotes.

Criterion
Nomothetic
Learning Curve Trend Analysis Criterion

Subject  Asymptote Day Rate Dev Day Rate Dev Day Rate Dev

26 30.7 60 40.7 33 20 452 47 22 430 40

27 76.0 56 838 10 14 544 28 18 59.7 21

28 36.7 36 403 10 29 383 4 32 360 2

33 423 57 385 9 13 383 9 16 448 6

42 46.1 26 545 18 8 580 26 14 570 24

45 446 21 457 2 43 480 8 35 518 16

Avg 46.1 43 50.6 14/9.7 21 47.0 20/2.0 28 48.7 18/5.7
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Two subjects looked at the graphs in one
order, three in the opposite order. The first
five ratings were not included in the analysis.

RESULTS AND DiscussION

Although the population from which these
random variables were sampled had a 109,
coefficient of variation and zero linear and
quadratic trend, random sampling of only six
items from the population generated a range
of data configurations that resembled typical
data, with reasonable disparity in both disper-
sion and trend from one graph to another.

Most subjects lamented their inability to
see data from sessions previous to the six on
display. In this sense, the experiment did not
permit the full range of observing behavior
typically involved in visual estimates of sta-
bility. The subjects reported that they at-
tended to both variability and trend in mak-
ing their decisions. A number of indices of
variability and trend were therefore exam-
ined in an attempt to capture the essence of
the subject’s behavior. The most successful
indices were the coefficient of variation, the
amount of linear trend and the amount of
quadratic trend, with both of the latter mea-
sured by weighting the data with appropriate
orthogonal polynomials.

The coefficient of variation was calculated
by dividing the sample standard deviation by
the mean of the data, and the indices of trend
were calculated by multiplying each of the
scores by the appropriate weight (-5, —3, —1,
1, 8, 5, for linear trend, 5, —1, —4, —4, —1, 5
for quadratic trend), and dividing the weighted
sum by the root mean square average of the
weights (8.37 for linear, 9.17 for quadratic),
and by the mean of scores. The correlations
between the average confidence rating for each
graph and each of the indices were: coefficient
of variation, 0.73; linear trend, 0.58; quadratic
trend, 0.53. The multiple correlation was 0.81.

Despite its success, the multiple regression
may not be a good analog of the behavior of
the raters. Rather than estimating a weighted
sum of the indices, the subjects seemed to
employ a noncompensatory approach: too
much variability, or too much linear or quad-
ratic trend would preclude stopping, no mat-
ter how close to zero the other indices were.
We can reconstruct the binary decisions from
the data with the following post-hoc analysis:
continue running whenever the coefficient of

variation exceeds 0.14, the coefficient of linear
trend 0.12, or the coefficient of quadratic
trend 0.20. These cut-points would have
stopped the experiment every time the aver-
age rater stopped it, and continued the ex-
periment 939, of the time the rater continued
1t.

Next, I applied the criterion to Cumming
and Schoenfeld’s data, stopping a subject
whenever all three coefficients over a six-day
period were less than 149,. Given that cri-
terion, on the average, 21 sessions are required
for stability, with an average deviation be-
tween rates over the last six sessions and
asymptotic rates of 209, (see Table 1). This
error falls between the 259, average deviation
of Cumming and Schoenfeld’s criterion, and
the 149, average deviation of the “learning
curve” criterion. Thus, while the “trend analy-
sis” is better than Cumming and Schoenfeld’s
criterion, it leaves room for improvement.
Some of the error arises from shifts in response
rates late in training, and it would be difficult
for any criterion imposed earlier in training
to get past periods of relative stability that
preceded the later changes in level. Another
source of inaccuracy is sampling error: the
average individual standard deviation during
the last 100 sessions was 6.6 responses per
minute. The standard error of the mean for
samples of six sessions was therefore 2.7 re-
sponses per minute. It follows that the average
deviation of sample means from population
means (i.e., rates over the last 100 sessions)
will be about 49%,. Response rates during Ses-
sions 75 to 80, which Cumming and Schoen-
feld considered asymptotic, deviated by an
average of 99,. Four to 99, is therefore about
the best we can hope for from these data.

Is it possible to approach closer to the
floor of 4 to 99, with trend analyses? Tests
employing larger numbers of sessions (10) and
a range of different cutpoints failed to improve
substantially on the 209, error. As Sidman
(1960) noted, increasing the stringency of our
criteria will not guarantee an increase in the
stability of the data when those criteria are
met; it may just cause the researchers “to
spend a lifetime, if they are that stubborn,
on the same uncompleted experiment.
Even if the criterion were occasionally met by
chance, in the course of uncontrolled varia-
bility, the data would be chaotic. As a result,
either the experiment will be abandoned (with
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an attendant loss of time and effort) or the
data will be invalid” (p. 260).

Sidman’s words call our attention to two
factors involved in every reasonable decision
concerning stability: the levels of variability
generally expected within a paradigm and
within a laboratory, and the cost-effectiveness
of additional training sessions. Whereas the
cut-points of the trend analyses and the num-
ber of sessions it encompasses may be easily and
properly adjusted by each user to allow for
intrinsic variability,? it is only with the nomo-
thetic approach that the costs of experimenta-
tion are explicitly taken into account.

EXPERIMENT III

“N should refer to the number of observa-
tions, not to the number of subjects”, I was
recently reminded. This sentiment, uttered in
defense of “‘small N” research, implies a possi-
ble trade-off between the number of subjects
and the number of sessions involved in an
experiment. Different types of information are
derived by conducting numerous sessions in-
volving a few subjects, versus conducting a
few sessions involving numerous subjects. In
the former case, we achieve a good specifica-
tion of the behavior of a few organisms, but
little information about how representative
they are of their species. In the latter case, we
achieve a good sample of the population, but
the behavior measured may be far from
asymptotic.

It is our thesis that these two types of in-
formation are both necessary, and further-
more, that they are commensurable. We as-
sume a nomothetic philosophy, according to
which data from individual organisms are to
be evaluated in terms of their contribution to
our knowledge of population characteristics
(Falk, 1956). Both sources of errors—deviation
of individuals from their asymptotic perform-
ance, and deviation of that asymptotic per-
formance from the performance of the typical
animal of the species—are to be minimized.

The nomothetic assumption is invoked, not
only because of its inherent reasonableness,
but because it provides the needed standard
for our next stability criterion. We know that
as the sample size (N) is increased, the ex-

*We now routinely employ eight-session trend tests
with cut-points around 159%,.

pected deviation between the sample mean
and the population mean will decrease as the
square root of N — 1. Similarly, as the number
of sessions is increased, the deviation between
the subjects’ measured performance and their
asymptotic performance will decrease. Given
fixed resources, we can maximize the precision
of our estimate of the population mean by
judiciously allocating those resources between
sessions and subjects. Conversely, given a de-
cision about the number of subjects to be
employed, we can stipulate when the decreas-
ing marginal utility of additional sessions
passes a threshold beyond which that decision
should be revised—or, standing by that de-
cision, when it becomes reasonable to termi-
nate the experiment. This strategy does not
assume that we have any particular interest in
between-group comparisons; it does assume
that we are interested in generalizing the re-
sults obtained with a sample to the popula-
tion as a whole.

METHOD

To effect the analysis, we must estimate
the probable magnitude of error that might
arise both from sampling error and from fail-
ure of the subjects to reach asymptote. In
the data reported by Cumming and Schoen-
feld, the mean of response rates for the six
subjects over the last 100 sessions was 46.1,
with an estimated o of 15.7. Assuming a nor-
mal distribution of error, we may infer that
approximately 959, of the replications of their
experiment with six subjects will generate
asymptotic mean response rates within two
standard errors of the mean, that is, between
33 and 59 responses per minute. The more
subjects that are run, the more tightly these
limits may be drawn. The standard error of
the mean, calculated by dividing the sample
estimate of the population standard deviation
(s) by the square root of N, thus provides the
needed relationship between sample size and
expected sampling error.

Let us estimate the change in error that oc-
curs with each additional session (dE/d]) by
subtracting the response rate during one ses-
sion from that measured during the previous
sessions. A provisional criterion for stability
is the following: when the overall decrease in
error derived from additional sessions becomes
less than the decrease in error derivable from
additional subjects (dE/dN), it becomes rea-
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sonable to terminate those subjects and ini-
tiate new subjects in their place. Alternatively,
taking the original number of subjects as an
index of the tolerable error—and this will be
the usual course of action—it becomes reason-
able to terminate the experiment. This for-
mulation may be improved by selective appli-
cation of the criterion: whenever the daily
decrease in error for an individual subject be-
comes less than the criterion, terminate it and
allocate the saved resources either to new
subjects, or to more sessions for the slower
subjects.

The above statement ignores the cost in-
volved in conducting additional sessions or
running additional subjects. If we take the
unit cost to be one subject-session, the cost
of each additional session is 1 (or N for the
group). The cost of each additional subject
must take into account the likelihood that it
will be necessary to run the subject as long
as the one it is replacing to obtain adequate
stability—let us say J sessions. Our criterion
then becomes: terminate a subject whenever

—dE / 7= —dE / ]
dJ ~dN )
That is, terminate whenever the error reduc-
tion expected from one additional session, di-
vided by the number of sessions to date, be-
comes less than the error reduction expected
from one additional subject. This explicit
introduction of the cost for additional sessions
saves us from the Sisyphean fate of Sidman’s
stubborn researcher, for the accumulating
costs of additional sessions progressively re-
laxes the criterion. The ad-hoc decision ‘““long
enough” (i.e., visual stability) is replaced by a
continuous and specifiable adjustment of the
criterion.
If the structure or economics of the labora-
tory dictate termination of the group as a
whole, Equation 2a becomes

—dE _ —dE

ar /1= /N
where the group is treated as a single organism,
and the dE/dJ is based on the change in the
dependent variable averaged over the group.

The derivative of the standard error of the
mean with respect to N is estimated by

dE —s
aN = 2NiE’ @)

(22)

(2b)

where s, the sample estimate of o,

S (x; — M)
o= i 4)
N

is presumed constant with respect to N (i.e., is
presumed unbiased; c¢f. Dixon and Massey,
1957). We specify that a subject be terminated
when the change in the dependent variable is
less than the above quantity times the num-
ber of sessions to date. Since N can change
only in integral steps, the critical point will
occur halfway between two values of N. We
therefore add 0.5 to N, to get the upper cate-
gory boundary of which N is the midpoint.
Our criterion becomes:

Y sJ

S TNt o5 (52)

For treatment of groups as a whole, it is:

i (5b)

Y = N W05

Let us see how this works for the data of
Cumming and Schoenfeld. Equation 5a in-
stantiates:

_157]
Y =565 (6)
Y = 47] (7

The criterion may be represented as a
straight line that changes in error from one
session to the next (dE/dJ) must cross below.
The changes in error are equivalent in magni-
tude to changes in the dependent variable,
but since it is not known a priori whether
such changes represent an increase or de-
crease in error, we conservatively require that
the absolute value of the change be less than
the criterion. The number of sessions required
for each of Cumming and Schoenfeld’s sub-
jects to pass this criterion for six days in a
row ranged from 14 to 35, and averaged 23.
The average rates over those days deviated
from the asymptotic rates by 18%,—a per-
formance within the range established by the
first two approaches (see Table 1).

Our criterion was generated in reference to
group error, not individual error, and may be
evaluated on that basis. The average response
rate over animals during the stable conditions
was 48.7 responses per minute. This deviates
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by less than 69, from the average asymptotic
rate of 46.1 responses per minute, and is easily
included in the 959, confidence interval for
the mean.

The nomothetic criterion requires an esti-
mate of the standard deviation of asymptotic
response rates, but this is not a severe prob-
lem. Let us assume a large error in estimating
the standard deviation. Had we presumed it
to be 7.9 instead of 15.7, we would have found
ourselves conducting an average of 34 sessions,
11 more than previously. An underestimation
of the sampling variability thus biases us
toward running additional sessions, since the
marginal utility of an extra animal becomes
less than the marginal utility of an extra ses-
sion, until additional sessions with their de-
creasing marginal returns and cumulating
costs have again balanced the scales. Con-
versely, had we presumed the standard devia-
tion to be 31.4 instead of 15.7, we would have
run an average of 17 sessions instead of 23.
The subjects’ average response rate when
stopped would have been 45.7—an error no
greater than that occurring with the stricter
criterion, although the average deviation for
individual animals increases to 219,

Problems of estimation may be further al-
leviated by use of the coefficient of variation,
rather than the standard deviation, in the
above calculations. The coefficient of variation
is the standard deviation divided by the mean;
it is less variable over subjects—and a fortiori
over experiments—than is the standard de-
viation (¢f. Cumming and Schoenfeld, 1960,
P. 73). Cumming and Schoenfeld’s coefficient
of variation for average asymptotic response
rates was 319, while their within-subject co-
efficient of variation averaged 14.3%, over the
last 100 sessions. It is unlikely that the be-
tween-subject variability will ever be less than
the within-subject variability, so that when
the former is lacking, the latter may be taken
as a conservative estimate of it. If the coefficient
of variation is used in Equation 5a, the left
side of the equation must also be divided by
the mean, so that we test proportional change
in error, rather than absolute change, against
the criterion. Since the coefficient of variation
(V) is traditionally based on the sample stan-
dard deviation, rather than the estimate of
population standard deviation (i.e., it employs
a divisor of N, rather than N — 1), our cri-
terion becomes

_ vJ N \os5
Y= 2(N + 0.5)15 (N - 1) ’ ®)
or, approximately
vJ

When the group will be terminated as a
unit, Equation 5b transforms to approxi-
mately:

_VJ
= oNE°

DiscussioN

It may be argued that sampling error over
subjects is somehow less important than fail-
ure to reach asymptote. For instance, the for-
mer may be expected to be random, whereas
the latter may be biased, with all individuals
approaching asymptote from the same direc-
tion. In fact, this was not a problem in the
analysis of Cumming and Schoenfeld’s data,
where our estimate of the terminal rate was
6%, too high, even though all animals ap-
proached asymptote from below. But the argu-
ment has some merit, and is applicable to any
type of stability criterion. If experimenters do
not sequence conditions according to a Latin
Square design, or pretrain animals to a range
of response rates, they may wish to adjust the
stability criterion. If sampling error is con-
sidered to be only half as detrimental as de-
viation of individual animals from asymptote,
the experimenter merely need halve the cri-
terion value. Similar proportional changes in
the criterion will accommodate different eval-
uations of the relative cost of subjects and
sessions. Whatever the experimenter’s deci-
sion, the value of Y chosen provides an ex-
plicit statement of the probable error in the
data, which is an important advance over
visual stability criteria.

To employ Equations 9a or 9b, we need
merely plot a straight line on graph paper,
with origin at zero and a slope of Y or Y.
The abscissa will measure sessions, and the
ordinate will measure the proportional rate
of change in error, as estimated by the dif-
ferences in the dependent variable from one
day to the next divided by the mean value of
the dependent variable on those days. To in-
crease the smoothness of these ‘“‘operating
characteristics”, I graph the average of the
previous day’s entry and the current change
index (this latter tactic generates an exponen-

Y (9b)
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tially-weighted moving average of the change
indices). Thus, if D; is the current value of
the dependent variable (for each subject when
using 9a or averaged over subjects when using
9b), D;_, the value of the dependent varia-
ble on the previous session, and Y; the value
to be graphed, then

Y, =05(Y,_,+|D;_, - D;|/Dy). (10

Inspection of Equations 9a and 9b reveals
that the criterion line becomes steeper, and
thus easier to pass, as the number of subjects
is decreased. This seems to penalize the re-
searcher who employs a large number of sub-
jects, by requiring that they be run for a
greater number of sessions than is required
of a researcher who employs fewer subjects.
This outcome follows from the logic of the
nomothetic approach, where the choice of N
is not arbitrary, but is presumed to be based
both on the variability expected between sub-
jects, and on the speed with which the de-
pendent variable is expected to approach
asymptote. Increases in N betoken, in a bal-
anced allocation, increased resources, and
Equations 9a and 9b automatically apportion
some of those resources to an increased num-
ber of sessions. If a researcher finds the present
Y criterion too lenient, it merely implies that
the researcher is using too few subjects for
the amount of resources that he or she is
willing to invest.

It is usually necessary to shape the animals
to respond, or pretrain them in other ways,
before one can even begin to measure the
dependent variable. These initial costs may
be taken into account by allocating them to
each of the conditions to be run, and then
appropriately offsetting the origin of the
change indices. If, for example, 12 days of
pretraining are necessary for a proposed ABA
design, we should begin graphing the change
indices four days to the right of the origin.

At the heart of the nomothetic approach is
our desire to optimize the information that we
get from any experiment about population
characteristics. This goal is equally valid
whether we employ within-group or between-
groups designs. In both cases, we take as N the
number of subjects in each condition—whether
or not the same subjects have appeared in
other conditions. The logic of when to use
each type of design has recently been reviewed
by Greenwald (1976; see also Erlebacher,

KILLEEN

1977). The within-subject design is appealing,
when appropriate, because we can usually de-
crease the variability in our dependent varia-
bles by choosing as our dependent variable
the difference or ratio of each individuals’ per-
formance in the various experimental condi-
tions, rather than the absolute values of their
performance. This decrease in V translates
into decreases in the number of subjects
needed, and, given the constraint of fixed re-
sources, permits each to be run for a greater
number of sessions.

GENERAL DISCUSSION

Three approaches to the evaluation of a
stability have been formulated. The learning-
curve approach was rejected as unwieldy, even
though it performed about as well as the sub-
sequent techniques. The trend analysis was
simpler to apply, and provides researchers
the flexibility of experimenting with their own
cut-points and number of sessions to be tested.
The nomothetic approach addressed the issue
of behavioral stability at a more fundamental
level. In this approach, the importance of
minimizing both learning error and subject
sampling error was assumed. Some such as-
sumption is implicit in most research, whose
results are inevitably generalized beyond the
three or four subjects employed. In the nomo-
thetic approach, representativeness is mea-
sured, not assumed. As number of subjects is
increased, representatives of the sample is in-
creased, with rate of increase being a function
of the number of subjects already in the
sample, and the intersubject variability typical
of the paradigm. Just as there is a decrease in
the marginal utility of each extra subject, so
there is a decrease in the marginal utility of
each extra session of training. When the latter
exceeds the former, it is time to add new
subjects—or to stop the experiment, if N is
large enough. This logic formed the basis for
the nomothetic approach, and led to the
criterion lines of Equations 9a and 9b.

Some researchers may insist that they are
interested only in the idiosyncracies of the few
animals in their experiment. Such idiographic
research needs no normative criteria, and
may indeed be terminated at the discretion
of the investigator. Other researchers may wish
to discriminate between two or more the-
ories, and the stopping criteria we proposed,
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while optimal, may not be adequate. But it
is short-sighted to attend to only one source
of variability (deviation from asymptote) while
ignoring other sources; the essence of theories
is their generality over a population, and re-
searchers interested in testing theories must
be willing to invest the necessary resources, in
both subjects and sessions. Conversely, for
simpler questions—such as, “is there any ef-
fect from treatment B”—we may employ fewer
subjects, and stop them short of asymptote.

The estimation of parameters has been a
central problem of statistics for some time.
The approaches evaluated in the present paper
are not new. Bush (1963) estimated the num-
ber of sessions necessary to maximize the pre-
cision of estimates of the parameters for
single-operator linear learning models. Al-
though restricted to a single model (similar to
Equation 1), his apportioning of resources be-
tween subjects and sessions adumbrates the
nomothetic philosophy. Kazdin (in Hersen and
Barlow, 1976) evaluated the statistics availa-
ble for “N of 1” research. These statistics are
essentially trend analyses, with major trends
removed, so that the residuals are uncor-
related and become amenable to analyses of
variance. A provocative discussion of such ap-
proaches is provided by Michael (1974). Wald
(1947) and others have refined the theory of
sequential statistical tests, in which sampling
is continued until the ratio of positive to nega-
tive outcomes passes one of two or more
boundaries. These “sequential probability ra-
tio tests” are primarily useful for data whose
parameters do not change as a function of
trials, but the associated graphical technique,
wherein the sampling is stopped when an op-
erating characteristic curve passes a boundary
line, is similar to the nomothetic tests outlined
above. Finally, R. A. Fisher’s (1935/1953) em-
phasis on maximizing the precision (defined
as the reciprocal of the variance) of a parame-
ter estimate for a fixed experimental cost indi-
cates a concern for efficiency that is funda-
mental to the present analyses.

In Experiment I, we were concerned with
a model of the learning curve, in Experiment
IT with a model of “visual stability tests”, and
in Experiment III with a model of an efficient
experimenter, one committed to representative-
ness as well as stability. The trend test formu-
lated in Experiment II captures the criteria
that derive from current laboratory contingen-
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cies (Polya, 1954; Skinner, 1956, 1958). The
nomothetic analysis questions those contingen-
cies. It suggests that the issues of precision,
cost-effectiveness, and representativeness are
properly involved in every scientific decision.
They deserve explicit consideration in experi-
mental analyses of behavior.
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